Het volledige minoraanbod van de LDE-instellingen voor collegejaar 2025-2026 wordt begin maart gepubliceerd op eduXchange.

Evolutionary computing

INFOEA

Over deze cursus

Evolutionary algorithms are population-based, stochastic search algorithms based on the mechanisms of natural evolution.
This course covers how to design representations and variation operators for specific problems.
Furthermore convergence behavior and population sizing are analyzed.
The course focuses on the combination of evolutionary algorithms with local search heuristics to solve combinatorial optimization problems like graph bi-partitioning, graph coloring, and bin packing.

Course form
Lectures, lab sessions.

Study material
To be announced.

Leerresultaten

After completing the course, students have

  • a thorough knowledge of the concepts, techniques, analyses, and algorithms in the field of evolutionary computation and meta-heuristic search algorithms.
  • theoretical knowledge to understand the behavior of evolutionary and meta-heuristic search algorithms.
  • a thorough knowledge of state-of-the-art applications of evolutionary computation and meta-heuristic search algorithms.
  • a thorough knowledge of solving multi-objective optimization problems with metaheuristic search algorithms.

and are capable of

  • designing efficient and high performance meta-heuristic search problem for diverse discrete optimization problems.
  • reading and understanding key journal publications in the field of evolutionary computation and meta-heuristic search algorithms.
  • experimentally comparing different meta-heuristic search algorithms on a set of benchmark problems.
  • implementing meta-heuristic search algorithms to solve hard, discrete optimization problems.
  • analyzing the performance and sensitivity of meta-heuristic search algorithms.
  • performing a statistically sound analysis of the experimental results of different meta-heuristic search algorithms.
  • working together with other students on designing, building, and testing evolutionary and meta-heuristic search algorithms.
  • making English language presentations in writing of one’s own research.
  • making English language presentations orally of one’s own research.

Assessment
The assessment consists of

  • a written exam (50% of the final mark)
  • lab assignments (40%)
  • paper report (10%).

To qualify for a repair of the final result the mark needs to be at least a 4, or “AANV”.

Voorkennis

Je moet voldoen aan de volgende eisen

  • Toelatingsbeschikking voor de master toegekend

Aanvullende informatie

  • Studiepunten
    ECTS 7.5
  • Niveau
    master
  • Selectie course
    Nee
Als er nog iets onduidelijk is, kijk even naar de FAQ van Utrecht University.

Aanbod

  • Startdatum

    3 februari 2025

    • Einddatum
      11 april 2025
    • Periode *
      Blok 3
    • Locatie
      Utrecht
    • Voertaal
      Engels
    • Tijd info
      Monday 13:15 - 14:00, Monday 13:15 - 15:00, Monday 13:15 - 16:00, Monday 13:15 - 17:00, Monday 13:15 - 18:00, Monday 13:15 - 19:00, Monday 14:15 - 15:00, Monday 14:15 - 16:00, Monday 14:15 - 17:00, Monday 14:15 - 18:00, Monday 14:15 - 19:00, Monday 15:15 - 16:00, Monday 15:15 - 17:00, Monday 15:15 - 18:00, Monday 15:15 - 19:00, Monday 16:15 - 17:00, Monday 16:15 - 18:00, Monday 16:15 - 19:00, Monday 17:15 - 18:00, Monday 17:15 - 19:00, Monday 18:15 - 19:00, Tuesday 13:15 - 14:00, Tuesday 13:15 - 15:00, Tuesday 13:15 - 16:00, Tuesday 13:15 - 17:00, Tuesday 14:15 - 15:00, Tuesday 14:15 - 16:00, Tuesday 14:15 - 17:00, Tuesday 15:15 - 16:00, Tuesday 15:15 - 17:00, Tuesday 16:15 - 17:00, Thursday 09:00 - 09:45, Thursday 09:00 - 10:45, Thursday 09:00 - 11:45, Thursday 09:00 - 12:45, Thursday 10:00 - 10:45, Thursday 10:00 - 11:45, Thursday 10:00 - 12:45, Thursday 11:00 - 11:45, Thursday 11:00 - 12:45, Thursday 12:00 - 12:45
    Course loopt nu
Gast inschrijvingen worden rechtstreeks behandeld door Utrecht University