Over deze cursus
Systems of polynomial equations in many variables define algebraic varieties, which are the basic objects of study in algebraic geometry. In this course we introduce some fundamental notions of algebraic geometry, such as coordinate rings, local rings, function fields, and affine and projective algebraic varieties. We develop the necessary algebraic tools and we prove the Hilbert’s Nullstellensatz, the core theorem that links the algebraic and the topological sides of algebraic varieties.
The course focuses on the study of one dimensional algebraic varieties, that is, algebraic curves. Plane curves will be discussed in detail as main concrete examples. For them we prove a theorem of Bezout that answers the question: How many points lie in the intersection of two plane curves?
We study morphisms and rational maps between arbitrary curves, and singularities (these occur for example when two branches of the same curve intersect). The goal of the course is to prove the birational classification of algebraic curves via the correspondence between smooth projective curves and function fields of transcendence degree one.
The final grade is calculated according to the results of hand-in exercises (20%) and a final exam (80%).
Language of the course: English
Leerresultaten
Voorkennis
Lineaire algebra (WISB107 en WISB108) en Inleiding Groepen en Ringen (WISB124). Aanbevolen zijn: Lichamen en Galoistheorie (WISB224) en Modulen en Voorstellingen (WISB223). Zie de cursusplanner (cursusplanner.uu.nl) voor de inhoud van deze vakken: selecteer Faculteit Betawetenschappen en vervolgens het programma van de bachelor Wiskunde van het meest recente jaar.
Bronnen
- Book
- Software Geen software nodig
Aanvullende informatie
- Meer infoCursuspagina op de website van Utrecht University
- Neem contact op met een coordinator
- StudiepuntenECTS 7.5
- Niveaubachelor
- Selectie courseNee
Aanbod
Startdatum
21 april 2025
- Einddatum4 juli 2025
- Periode *Blok 4
- LocatieUtrecht
- VoertaalEngels
De inschrijving begint over 37 dagen