ADS: Fundamental Techniques in data science with R

201900026

Over deze cursus

see for full information the English version (flag)body { font-size: 9pt; font-family: Arial } table { font-size: 9pt; font-family: Arial }

Leerresultaten

see for full information the English version (flag)

Voorkennis

You should be familiar with the basic principles of applied statistics (up to regression). Some familiarity with interpreting basic statistical software output (such as e.g. SAS/STATA/SPSS, JASP) is required. Some familiarity with a scripting or programming language, such as SPSS syntax, R or Python is desirable, but not necessary.

Bronnen

  • Literature Parts from the freely available text: Speekenbrink (2023) Statistics: Data analysis and modelling https://mspeekenbrink.github.io/sdam-book/index.html
  • Literature Parts from the freely available text: Wickham. R for Data Science (2023). O’Reilly. https://r4ds.hadley.nz/
  • Literature Additional literature and references are provided during the course
  • Software All software used (Rstudio, R) is open source and freely available online, as is the mandatory literature.

Aanvullende informatie

cursus
7.5 ECTS • broadening
  • Niveau
    bachelor
Als er nog iets onduidelijk is, kijk even naar de FAQ van Utrecht University.

Startdata

  • 10 nov 2025

    tot 23 jan 2026

    LocatieUtrecht
    VoertaalEngels
    Periode *Blok 2
    Monday 13:15 - 14:00, Monday 13:15 - 15:00, Monday 13:15 - 16:00, Monday 13:15 - 17:00, Monday 14:15 - 15:00, Monday 14:15 - 17:00, Monday 14:15 - 18:00, Monday 15:15 - 16:00, Monday 15:15 - 17:00, Monday 15:15 - 19:00, Monday 16:15 - 17:00, Monday 16:15 - 19:00, Monday 17:15 - 18:00, Monday 17:15 - 19:00, Monday 18:15 - 19:00, Tuesday 13:15 - 14:00, Tuesday 13:15 - 15:00, Tuesday 13:15 - 16:00, Tuesday 13:15 - 17:00, Tuesday 14:15 - 15:00, Tuesday 14:15 - 17:00, Tuesday 15:15 - 16:00, Tuesday 15:15 - 17:00, Tuesday 16:15 - 17:00, Thursday 09:00 - 09:45, Thursday 09:00 - 10:45, Thursday 09:00 - 11:45, Thursday 09:00 - 12:45, Thursday 10:00 - 10:45, Thursday 11:00 - 11:45, Thursday 11:00 - 12:45, Thursday 12:00 - 12:45